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Context: Secondary amenorrhea—the absence of menses for three consecutive cycles—affects
approximately 3–4% of reproductive age women, and infertility—the failure to conceive after 12
months of regular intercourse—affects approximately 6–10%. Neuroendocrine causes of amen-
orrhea and infertility, including functional hypothalamic amenorrhea and hyperprolactinemia,
constitute a majority of these cases.

Objective: In this review, we discuss the physiologic, pathologic, and iatrogenic causes of amen-
orrhea and infertility arising from perturbations in the hypothalamic-pituitary-adrenal axis, in-
cluding potential genetic causes. We focus extensively on the hormonal mechanisms involved in
disrupting the hypothalamic-pituitary-ovarian axis.

Conclusions: A thorough understanding of the neuroendocrine causes of amenorrhea and
infertility is critical for properly assessing patients presenting with these complaints. Prompt
evaluation and treatment are essential to prevent loss of bone mass due to hypoestrogenemia
and/or to achieve the time-sensitive treatment goal of conception. (J Clin Endocrinol Metab
100: 812– 824, 2015)

Secondary amenorrhea (the absence of menses for
three consecutive cycles) and infertility (the inabil-

ity to conceive after 12 months of regular intercourse)
are common complaints evaluated by primary care phy-
sicians, obstetrician/gynecologists, and endocrinolo-
gists. Over 50% of cases of secondary amenorrhea re-
sult from perturbations in the hypothalamic-pituitary-
adrenal (HPA) axis (1). An understanding of the
neuroendocrine causes of amenorrhea and infertility is
therefore critical when evaluating patients presenting
with these complaints in order to implement the most
appropriate treatment regimen. We review the physio-
logical, pathological, and iatrogenic causes of neuroen-
docrine-associated amenorrhea and infertility, includ-
ing genetic causes, and the hormonal mechanisms
responsible for the perturbations in the hypothalamic-
pituitary-ovarian (HPO) axis (Figure 1).

Physiological Causes of Amenorrhea

Functional hypothalamic amenorrhea (FHA)
FHA, or stress-induced anovulation, is one of the most

common causes of secondary amenorrhea (1), and it ac-
counts for the reproductive dysfunction seen in undernu-
trition, excessive exercise, severe emotional stress, and
chronic disease. From a teleological standpoint, in the face
of nutritional or physical stress, it is adaptive for an or-
ganism to allocate energy resources for its own survival
rather than the costly process of reproduction, and there-
fore FHA is a physiological response to environmental and
physical stressors.

Hormonal mediators of FHA
HPA axis. During periods of physical, nutritional, or ex-
treme emotional stress, the HPA axis is activated and in-
hibits the HPO axis at multiple levels (Figure 2). At the
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level of the hypothalamus, CRH suppresses GnRH secre-
tion. In normally cycling women, an infusion of CRH
markedly decreases FSH/LH secretion, but GnRH admin-
istration prevents this decrease, suggesting that CRH
acts by inhibiting GnRH secretion (2). At the level of the
pituitary, ACTH has been shown to have negative re-
productive effects in mice. In adrenalectomized mice
maintained on physiological doses of glucocorticoid,
ACTH administration for 10 days results in an absence
of corpora lutea (3), demonstrating that ACTH has re-
productive effects independent of adrenal steroid
production.

Women with FHA also have higher 24-hour mean
plasma cortisol levels compared to controls (4), and cortisol,
the end-product of the HPA axis, suppresses reproductive
function at the hypothalamic, pituitary, and uterine levels. In
rhesusmonkeys, supraphysiologicaldosesofhydrocortisone
suppress gonadotropin secretion, but this suppression is al-
most completely reversed by intermittent GnRH infusion,
suggesting that cortisol suppresses GnRH secretion (5).
Women with Cushing’s disease and women on long-term
supraphysiological prednisolone therapy have a reduced
LH response to GnRH (6, 7), suggesting that glucocorti-
coids also suppress the responsiveness of pituitary go-
nadotrophs to hypothalamic input. Glucocorticoids also
inhibit the effects of estradiol on the uterus. Dexametha-
sone coadministered with estradiol attenuates the ex-
pected increase in uterine weight seen with estradiol alone,
at least in part by reducing estrogen receptor concentra-

tion (8). Therefore, cross talk between the HPA and HPO
axes promotes the development of amenorrhea as a func-
tional adaptation to stress.

Leptin. Levels of leptin, a hormone secreted by adipocytes,
are low in women with FHA (9, 10), which may be a
mediator of amenorrhea. Two studies have investigated
the effects of recombinant methionyl human leptin (rh-
leptin) in women with FHA. An open-label study found
that LH-pulse frequency increased after 2 weeks of treat-
ment with rhleptin (11). In a randomized placebo-con-
trolled study, significantly more women treated with rh-
leptin had a menstrual bleed, half of which were associated
with ovulation (12). Although the exact mechanism by
which decreased leptin levels cause anovulation is not
known, low leptin levels may suppress GnRH through a
kisspeptin-mediated pathway (13).

Insulin. Changes in body weight—both weight loss and
weight gain—may affect fertility. Significant weight loss
due to chronic undernutrition is a cause of FHA and is
characterized by low insulin levels, whereas significant
weight gain may result in obesity and insulin resistance—a
state of functional hypoinsulinemia. Importantly, in ani-
mal models, insulin has been shown to modulate the HPO
axis, and therefore low or functionally low insulin levels
may be a mediator of infertility. In a mouse model, females
with neuron-specific disruption of the insulin receptor had
a significantly reduced antral follicle count due to a 90%

PHYSIOLOGIC

PATHOPHYSIOLOGIC

IATROGENIC

NEUROENDOCRINE CAUSES OF AMENORRHEA AND INFERTILITY

1) Medications
a. GnRH suppression
    i. Opioids
    ii. Glucocorticoids**
b. Hyperprolactinemia

i. Pyschotropic medications
ii. Gastrointestinal motility agents
iii. Antihypertensives (verapamil
   methyldopa)

c. Hypophysitis (CTLA-4 antibodies)
2) Pituitary surgery
3) Radiation therapy

1) Hyperprolactinemia
a. Lactotroph adenoma
b. Stalk disruption
c. Primary hypothyroidism
d. Chronic renal failure
e. Chest wall injury

2) Sellar mass/lesion*
3) Infiltrative/infectious processes*
4) Sheehan’s syndrome
5) Traumatic brain injury
6) Adrenal Tumors
7) Genetic causes

a. Idiopathic hypogonadotropic
     hypogonadism
b. Gene mutations affecting 
     transcriptional determinants 
     of pituitary development
c. Congenital adrenal hyperplasia

1) Functional hypothalamic
     amenorrhea
2) Hyperprolactinemia

a. Pregnancy
b. Lactation

Figure 1. An overview of neuroendocrine causes of amenorrhea and infertility, including physiological, pathophysiological, and iatrogenic
etiologies. *, Possible causes of sellar masses and lesions, including infiltrative and infectious processes, are listed in Table 1. **, In humans, high-
dose glucocorticoids may also decrease the responsiveness of the pituitary to GnRH stimulation (7).
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reduction of circulating LH (14), demonstrating the im-
portance of insulin signaling in fertility.

Fibroblast growth factor-21 (FGF-21). FGF-21 is a liver-
derived hormone whose production is up-regulated in
response to starvation (15, 16). Recently, FGF-21 was
shown to be a potential mediator of starvation-induced
amenorrhea (17). FGF-21 transgenic mice are anovu-
latory, with low LH levels, and administration of
GnRH, but not exogenous gonadotropins, elicits an
ovulatory LH surge, demonstrating that FGF-21 acts at
the level of the hypothalamus to disrupt ovulation (17).
FGF-21 transgenic mice have decreased Kiss-1 gene ex-
pression in the anteroventral periventricular nuclei of
the hypothalamus, and the product of Kiss-1, kisspep-
tin, is a potent stimulator of GnRH secretion, suggest-
ing a mechanism by which FGF-21 disrupts ovulation
(17). Whether FGF-21 is a mediator of FHA in humans
is unknown.

Hyperprolactinemia
Hyperprolactinemia—the most common cause of pi-

tuitary-associated amenorrhea—may be due to physio-
logic or pathophysiologic causes. The exact mechanism by
which hyperprolactinemia causes hypogonadotropic hy-

pogonadism is not known, but hy-
perprolactinemic women have re-
duced LH-pulse frequency and
reduced LH responsiveness to estro-
gen (18), suggesting that GnRH sup-
pression may be a key factor. This is
supported by the fact that in hyper-
prolactinemic, amenorrheic women,
treatment with pulsatile GnRH re-
sults in follicular maturation and
ovulation when coupled with a hu-
man chorionic gonadotropin trigger
(18). CRH (19) and kisspeptin may
be important mediators of prolactin-
induced GnRH suppression. In ro-
dent models, prolactin-receptor
mRNA has been localized to kiss-
peptin neurons in the hypothalamus
(20), and kisspeptin administration
to hyperprolactinemic female mice
increases circulating gonadotropin
levels and restores ovulation (21). In
vitro, prolactin inhibits granulosa
cell function (22), and therefore pro-
lactin may also act by directly dis-
rupting ovarian function.

Although most women with hyper-
prolactinemia are amenorrheic, some

have ovulatory menstrual cycles. These women may still suf-
fer frominfertilitydue toa short luteal-phasedefect (23), and
therefore treating hyperprolactinemia may be important
even in regularly menstruating women. Importantly, a num-
ber of physiological causes of hyperprolactinemia and ame-
norrhea—including pregnancy—do not warrant treatment
and therefore should be excluded before initiation of
treatment.

Physiological causes of
hyperprolactinemia
Pregnancy. Pregnancy is the most common cause of hy-
perprolactinemia. Prolactin levels increase during preg-
nancy and peak at delivery, with levels reaching as high as
600 ng/mL (24). In women who do not nurse, prolactin
levels usually decrease during the first 72 hours postpar-
tum (24, 25) and normalize by 3 weeks (25).

Lactation. In nursing women, suckling increases prolactin
levels, although this usually subsides by 12 weeks due to
the postpartum drop in estradiol levels resulting in de-
creased lactotroph hyperplasia (24). Lactational amenor-
rhea is the result of a number of factors, including mater-
nal nutritional status relative to the frequency/intensity of

Figure 2. Potential hormonal mediators of amenorrhea and infertility. Physical, emotional, or
nutritional stress may increase CRH levels, which suppress GnRH release. Cortisol levels, which
increase in the setting of stress and Cushing’s syndrome, also suppress GnRH release and likely
decrease LH responsiveness to GnRH. Starvation results in low leptin levels and increased FGF-21
levels in animal models; the low leptin levels and increased FGF-21 levels likely suppress GnRH
release by decreasing kisspeptin expression. In primary hypothyroidism, TRH levels are increased
and stimulate prolactin release. Hyperprolactinemia suppresses GnRH release by decreasing
kisspeptin expression, and possibly through a CRH-mediated pathway. High androgen and
progesterone levels may be seen in CAH, and these hormones likely suppress GnRH release. kiss,
kisspeptin.
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nursing (26) and hyperprolactinemia. Prolactin levels,
their response to suckling, and prolactin bioactivity are all
associated with duration of amenorrhea (27–29), and like
prolactin-induced amenorrhea, lactational amenorrhea is
associated with reduced LH-pulse amplitude and fre-
quency (30) and reduced LH responsiveness to estrogen
(31). Moreover, administration of pulsatile GnRH to
women with lactational amenorrhea stimulates follicle
maturation, ovulation, and luteal-phase function (30),
suggesting that GnRH suppression may be a causative
factor.

Macroprolactinemia. Macroprolactinemia is another
cause of physiological hyperprolactinemia. The predom-
inant form of prolactin is a 23-kD form, but some indi-
viduals may have a significant percentage of circulating
prolactin consisting of a higher molecular mass form
called macroprolactin. Macroprolactin is thought to be
either a complex consisting of the 23-kD form and an
immunoglobulin (32) or a complex consisting of glyco-
sylated prolactin aggregates (33). Macroprolactin is
cleared from the circulation more slowly than the 23-kD
form (34), thereby causing hyperprolactinemia, but it is
also less bioactive, supporting the observation that mac-
roprolactinemia is usually asymptomatic (35). Impor-
tantly, up to 25% of individuals with hyperprolactine-
mia may have macroprolactinemia (36, 37), and
therefore evaluation for macroprolactinemia in asymp-
tomatic individuals may be warranted to prevent un-
necessary treatment. Macroprolactin can be detected
through gel-filtration chromatography or polyethylene
glycol precipitation (38).

Pathophysiological Causes of Amenorrhea

Pathophysiological causes of hyperprolactinemia
As mentioned above, there are both physiologic and

pathophysiologic causes of hyperprolactinemia. Pathophys-
iologiccausesofhyperprolactinemiatypicallyresult inamen-
orrhea and/or infertility in premenopausal women, and
therefore an elevated prolactin level requires prompt evalu-
ation(Figure3).Pathophysiologiccausesofhyperprolactine-
mia include lactotroph adenomas, stalk disruption, primary
hypothyroidism, renal failure, and chest wall injury.

Lactotroph adenomas
Prolactin-secreting adenomas (lactotroph adenomas) are

the most common subtype of secretory pituitary adenoma.
These tumors are usually benign, and prolactin levels typi-
cally correlate with tumor size. Individuals with large ade-
nomas can have prolactin levels on the order of 104 ng/mL

(39),yetwithpoorlydifferentiatedorcystic lesions,prolactin
levels will be lower than expected based on size.

Stalk disruption
Dopamine is produced by neurons in the arcuate nucleus

of the hypothalamus and tonically suppresses pituitary pro-
lactin production. Any disruption of the stalk connecting the
hypothalamus to the pituitary can prevent the flow of dopa-
mine into the pituitary gland and result in hyperprolactine-
mia and amenorrhea. Large sellar masses (Table 1) or trau-
matic injuries are common causes of stalk disruption.

Primary hypothyroidism
TRH, secreted by the hypothalamus, not only stimulates

release of TSH by the pituitary but also stimulates prolactin
release (40). Individuals with primary hypothyroidism have
a heightened prolactin response to TRH, resulting in greater
prolactin secretion in response to TRH stimulation (41);
therefore hyperprolactinemia and resultant amenorrhea can
be a consequence of primary hypothyroidism (42). Primary
hypothyroidism may also lead to significant enlargement of
the pituitary gland due to thyrotroph hyperplasia and likely
lactotroph hyperplasia, but treating the hypothyroidism
should result in regression of the hyperplasia (43) and nor-
malization of the prolactin level (44).

Chronic renal failure
Chronic renal failure may result in hyperprolactinemia

due to both decreased renal clearance and increased se-
cretion of prolactin. The latter may be the result of reduced
lactotroph responsiveness to dopamine suppression (45).
Although liver disease was once posited as a common
cause of hyperprolactinemia (46), recent reports suggest
that it is a very rare cause of hyperprolactinemia (47).

Chest wall injury
Traumatic chest wall injury is a rare potential cause of

hyperprolactinemia (48). In a patient with hyperpro-
lactinemia after a severe burn to the chest wall, intercostal
nerve blockade resulted in normalization of her serum
prolactin level (48), suggesting that a neurogenic stimulus
at the site of injury was responsible.

Non-lactotroph adenomas and sellar masses
Any sellar mass or lesion (Table 1) can cause amenorrhea.

Mechanismsofamenorrhea includehyperprolactinemiadue
to stalk disruption and/or compression of the pituitary go-
nadotrophs, particularly when the lesion is � 1 cm. In the
case of functioning adenomas, hormonal effects may also
play a role in the development of amenorrhea.
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Cushing’s disease
Amenorrhea is a common finding in women with

ACTH-secreting adenomas (Cushing’s disease). In a series
of 45 women with Cushing’s disease, 33% were amenor-

rheic, and amenorrhea was associated with higher mean
serum cortisol levels and lower estradiol and SHBG levels
(49). Although adrenal androgen levels are typically ele-
vated inCushing’sdisease, amenorrheawasnotassociated

HCG
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Prolactin
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+
Pregnancy

Evaluate
& treat

Evaluate for
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insufficiency

high

Pituitary MRI

 + Lesion***
►Evaluate for secretory adenoma
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►Further etiologic evaluation

Differential diagnoses:
►Medication induced
►Small microadenoma
►Symptomatic macroprolactinemia
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Progesterone challenge

Transferrin saturation (hemochromatosis screen)

Estrogen / Progesterone  
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traumatic brain injury,
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17-OH progesterone (AM)
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Figure 3. A suggested diagnostic algorithm for evaluating patients with secondary amenorrhea, including non-neuroendocrine causes.
Importantly, all patients presenting with secondary amenorrhea should have a history and physical examination performed and a basic laboratory
evaluation consisting of serum human chorionic gonadotropin, TSH, FSH, and prolactin levels. *, Individuals who have been prescribed CTLA-4
antibody therapies (ipilimumab or tremelimumab) should have an MRI with pituitary cuts to evaluate for hypophysitis. **, Unless the cause of the
hyperprolactinemia can be definitively attributed to the medication (for example, by stopping the medication and repeating the prolactin level), it is
difficult to exclude the possibility of a prolactinoma or stalk disruption (due to a sellar lesion) causing the hyperprolactinemia. ***, If the lesion is
small (�1 cm) and is found to be nonsecretory, we would recommend following the “No lesion and normal prolactin” pathway because this lesion
is unlikely to be the cause of the amenorrhea. Abbreviations: abnl, abnormal; BMI, body mass index; DHEAS, dehydroepiandrosterone sulfate;
PCOS, polycystic ovary syndrome; 17-OH progesterone, 17-hydroxyprogesterone; H&P, history and physical.
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with serum androgen levels or free androgen index (49).
Therefore, amenorrhea in Cushing’s disease is more likely
mediated by suppression of GnRH by cortisol (49) rather
than hyperandrogenemia.

Acromegaly
Amenorrhea and infertility are also common findings in

women with GH-secreting adenomas (acromegaly). In a
study of 47 women with acromegaly, 62% had amenor-
rhea, which was associated with higher GH levels and
lower LH and estradiol levels (50). As with any sellar mass,
compression of pituitary gonadotrophs, or hyperpro-
lactinemia—either due to cosecretion of prolactin by the
tumor or stalk disruption—may be important in the de-
velopment of amenorrhea, but another potential cause

may be increased androgen bioavailability due to de-
creased SHBG levels (50). In normally cycling women, T
administration reduces LH-pulse frequency, suggesting a
mechanism by which increased androgen activity may me-
diate amenorrhea (51). In men, GH excess may also have
a direct effect on gonadal function, suggested by the fact
that men with acromegaly have significantly lower semen
parameters compared to controls, and post-treatment de-
creases in IGF-1 levels correlate with increases in total
sperm motility (52); therefore, a direct gonadal effect may
potentially play a role in the development of amenorrhea
as well.

Thyrotroph adenomas
Amenorrhea or oligomenorrhea may also be a present-

ing finding in women with TSH-secreting adenomas (53),
and hyperthyroidism may be a contributing factor. Com-
pared to euthyroid controls, hyperthyroid women with
amenorrhea have higher SHBG, FSH, LH, and estradiol
levels (54) but do not have a midcycle LH peak, suggesting
that amenorrhea results from anovulation due to the fail-
ure of estrogen to stimulate LH release (55).

Infiltrative processes
Any inflammatory or infectious disease can infiltrate

the hypothalamic-pituitary axis, resulting in anterior pi-
tuitary dysfunction and hypogonadotropic hypogonad-
ism. Metastases—most commonly from primary tumors
of the breast or lung—may also invade the hypothalamic-
pituitary axis and cause amenorrhea (56).

Hypophysitis
An inflammatory infiltrate in the pituitary gland (hy-

pophysitis) typically results in hypopituitarism due to de-
struction of cells in the anterior pituitary. Hypophysitis
may also cause hyperprolactinemia due to stalk disruption,
andtherefore therearemultiplemechanismsbywhichamen-
orrheamayoccur.The twomost commontypesofhypophy-
sitis are lymphocyticandgranulomatoushypophysitis.Lym-
phocytic hypophysitis, occurring primarily in females, is
commonly diagnosed during pregnancy or postpartum, and
a majority of patients develop anterior pituitary dysfunction
(57). Granulomatous hypophysitis—characterized by gran-
ulomas formed by multinucleated giant cells—may occur in
the setting of systemic diseases, including Wegener’s granu-
lomatosis (58).

IgG4-related disease is a more recently described cause
of hypophysitis characterized by an infiltrate consisting of
IgG4-positive plasma cells (59). This entity has been as-
sociated with hypogonadotropic hypogonadism (59), al-
though it predominantly affects males and individuals
�50 years old and therefore is a rare cause of amenorrhea.

Table 1. Sellar Masses and Lesions (128, 129)

Benign and malignant neoplastic processes
Pituitary adenoma
Craniopharyngioma
Chordoma
Metastatic disease
Meningioma
Germ cell tumor
Ependymoma
Granular cell tumor
Hemangioma
Primary lymphoma
Sarcoma

Chondrosarcoma
Osteosarcoma
Fibrosarcoma

Carcinoma of sinus origin
Pituicytoma
Papilloma
Schwannoma

Cystic lesions
Rathke’s cleft cyst
Arachnoid cyst
Dermoid cyst
Epidermoid cyst
Suprasellar cyst
Mucocele

Vascular lesions
Aneurysm
Arteriovenous fistula of cavernous sinus

Infiltrative and infectious processes
Abscess
Hypophysitis

Lymphocytic
Granulomatous
Xanthomatous
IgG4-related disease
CTLA-4 antibody-related

Sarcoidosis
Fibrous dysplasia
Hemochromatosis
Langerhans cell histiocytosis
Pituitary hyperplasia
Sphenoid sinusitis
Tuberculosis
Cysticercosis
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Granulomatous diseases
Sarcoidosis and tuberculosis may also cause amenor-

rhea. In sarcoidosis, hypogonadotropic hypogonadism is
usually due to granulomatous infiltration of the hypothal-
amus, although granulomas may also invade the pituitary
and infiltrate gonadotroph cells (60). In addition, both
intrasellar tuberculomas and tuberculous meningitis have
been associated with amenorrhea (61–63). A study of 49
patients with a history of tuberculous meningitis in child-
hood found that 10% developed gonadotropin deficiency,
likely due to progressive hypothalamic scarring (63).

Hemochromatosis
Although hereditary hemochromatosis is an important

cause of hypogonadism in men due to iron deposition in
the pituitary gonadotrophs and/or testes, it rarely causes
hypogonadism in women (64), likely because menstrual
bleeding protects against iron deposition.

Langerhans cell histiocytosis
Langerhans cell histiocytosis is characterized by the in-

appropriate proliferation and infiltration of a type of den-
dritic cell into various regions of the body including the
hypothalamic-pituitary axis. Although typically associ-
ated with diabetes insipidus, hypogonadotropic hypogo-
nadism has been reported (65).

Sheehan’s syndrome
During pregnancy, the pituitary gland enlarges due to

estrogen stimulation of lactotroph cells (66). This enlarg-
ing tissue may compress the superior hypophyseal ar-
tery—a major source of blood for the anterior pituitary—
making the gland vulnerable to changes in blood supply.
Women with significant peripartum blood loss may de-
velop ischemic necrosis of the pituitary gland, resulting in
hypopituitarism. This form of hypopituitarism, referred
to as Sheehan’s syndrome, is usually seen in cases of sig-
nificant hemorrhage, although rare cases have been re-
ported in individuals with minimal postpartum bleeding
(67), and therefore pituitary autoimmunity has been hy-
pothesized to play a role in the development of anterior
pituitary dysfunction (68).

Sheehan’s syndrome is now less commonly seen in de-
veloped countries due to improvements in the manage-
ment of peripartum hemodynamic complications; how-
ever, recent reports suggest that its incidence in the
developed world may be greater than previously thought
(69). A retrospective study from France demonstrated a
mean delay of 9 years before diagnosis (70), suggesting
that the diagnosis is often overlooked in developed
countries.

Traumatic brain injury
Amenorrhea may also present after traumatic brain in-

jury or subarachnoid hemorrhage. Importantly, even mild
head injuries—those not requiring hospitalization—can
result in hypogonadism (71). Loss of pituitary function
may be delayed and can present 12 months after the initial
insult (72).

Adrenal tumors
Amenorrhea is frequently observed in women with glu-

cocorticoid and/or androgen-secreting adrenal neo-
plasms. As mentioned above, the elevated cortisol levels
produced by glucocorticoid-secreting tumors likely sup-
press GnRH secretion, thereby causing amenorrhea (5).
Neoplasms producing androgens alone are exceedingly
rare, and approximately 50% are malignant (73). Com-
monly presenting symptoms include hirsutism, acne, and
oligomenorrhea (73). In women with normal menstrual
cycles, T reduces LH-pulse frequency (51), suggesting a
mechanism by which hyperandrogenemia may cause
oligomenorrhea.

Genetic causes of neuroendocrine-associated
amenorrhea

Hypothalamus: idiopathic hypogonadotropic hypo-
gonadism (IHH)

IHH is a heterogeneous group of disorders in which
individuals have delayed or absent pubertal develop-
ment—typically due to GnRH deficiency or a GnRH re-
ceptor mutation—coupled with normal anatomic find-
ings on hypothalamic/pituitary imaging. Although IHH
predominantly affects males, it is a cause of infertility in
women, typically presenting as primary amenorrhea.

There are a number of associated phenotypic findings
in individuals with IHH, the most common of which is
anosmia (Kallman’s syndrome). Genetic mutations that
impair neuronal migration commonly result in concurrent
hypogonadism and anosmia due to the shared embryonic
development of GnRH and olfactory neurons. In recent
years, a number of genetic mutations that cause Kallman’s
syndrome have been discovered. These include mutations
in the KAL1 gene (74), the FGF-1 receptor (75), FGF-8
(76), the gene encoding semaphorin-3A (77), the CHD7
gene (78), and the genes encoding prokineticin-2 and pro-
kineticin receptor-2 (79).

Genetic defects in GnRH secretion and function have
also been identified in cases of IHH with normosmia. Kiss-
peptin is a potent regulator of GnRH secretion, and mu-
tations in KISS1 and KISS1R, the genes encoding kisspep-
tin and its receptor, cause hypogonadism. Mutations of
the gene encoding leptin (80), its receptor (81), and mu-
tations in the prohormone convertase 1 gene (82) have all
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been associated with both hypogonadotropic hypogonad-
ism and severe obesity. GnRH receptor mutations also
result in hypogonadotropic hypogonadism (83). Unlike
most patients with IHH, individuals with GnRH receptor
mutations typically do not respond to conventional doses
of pulsatile GnRH administration, although successful
conception with high-dose pulsatile GnRH has been re-
ported (84).

Although IHH represents only a small subset of infer-
tility, the underlying mutations may confer susceptibility
to the development of FHA. In a study of 55 women with
FHA, 13% were found to have heterozygous mutations in
genes associated with IHH, as compared to no mutations
found in 422 controls (85). Therefore, FHA may stem
from interplay between environmental and genetic fac-
tors, whereby inherited defects in GnRH biology may
lower the threshold at which external stressors suppress
the HPO axis (85).

Pituitary
Primary amenorrhea may also result from mutations in

genes encoding transcription factors involved in the cel-
lular proliferation and differentiation of the pituitary
gland. HESX1 (86), GLI2 (87), and SOX3 (88) mutations
have been linked to hypopituitarism, and mutations in
SOX2 (89), LHX3 (90), LHX4 (91), and PROP1 (92)
may cause gonadotropin deficiency. Alterations in these
genes may present with other clinical findings, which may
help with the diagnosis. For example, mutations in SOX2
may result in anophthalmia, and mutations in LHX3
have been associated with a rotationally limited cervical
spine (90).

Adrenal: congenital adrenal hyperplasia (CAH)
Reduction in the activity of adrenal enzymes responsi-

ble for cortisol production may also result in infertility.
CAH is a family of inherited disorders characterized by
defects in cortisol production, resulting in increased
ACTH production due to reduced negative feedback and
consequent adrenal gland proliferation. Although there
are rare forms of CAH that result in infertility, including
11�-hydroxylase deficiency (93), 17�-hydroxylase defi-
ciency, and 3�-hydroxysteroid dehydrogenase deficiency
(94), CAH most commonly arises from autosomal reces-
sive mutations in the gene that encodes 21-hydroxylase
(21-OH), CYP21A2, which result in shunting of steroid
precursors toward androgen biosynthesis. There is con-
siderable variability in disease phenotype, depending on
the severity of the mutation. Classic 21-OH deficiency is
typically diagnosed at birth and can present with severe
salt wasting and/or prenatal virilization of external female
genitalia, whereas nonclassic CAH (nonclassic 21-OH de-

ficiency [NC21OHD]) presents postnatally with signs of
hyperandrogenism including hirsutism, acne, frontal
balding, and menstrual irregularities (95).

The oligomenorrhea in women with 21-OH deficiency
is likely due to elevated androgen and/or progesterone
levels. Patients with classic 21-OH deficiency with irreg-
ular menstrual cycles have elevated progesterone and an-
drostenedione levels that are associated with reduced LH-
pulse amplitude and frequency (96). In vitro, androgens
increase GnRH-pulse frequency (97), supporting the ob-
servation of elevated LH levels in women with NC21OHD
(98); yet in normally cycling women, high-dose T infusion
results in reduced LH-pulse frequency, even when block-
ing estrogen aromatization (51). Therefore, although the
exact mechanism by which androgens act to induce oli-
gomenorrhea is unknown, hyperandrogenemia may be a
contributing factor in CAH. Elevated levels of progester-
one, a substrate of 21-OH, also likely contribute to men-
strual irregularity. Administration of progesterone to nor-
mally cycling women reduces LH-pulse frequency, and the
progesterone receptor has been identified on gonadotroph
cells in the pituitary, suggesting that progesterone’s go-
nadotropin-suppressing effects may be mediated by both
the hypothalamus and pituitary (99).

Although classic CAH is relatively rare, NC21OHD is
one of the most common autosomal recessive diseases
known, occurring in 1 in 100 individuals in a mixed ethnic
population (100) and at a much higher frequency (1 in 27)
in the Ashkenazi Jewish population (101). Given its
unique treatment implications, it is important to distin-
guish NC21OHD from other causes of hyperandrogenism
and oligomenorrhea, such as polycystic ovary syndrome.
In women with evidence of hyperandrogenism and/or oli-
gomenorrhea, the prevalence of NC21OHD has been re-
ported to range from 1.2–13.8% (102–107). Not detected
on newborn screening tests, the most definitive hormon-
ally based diagnostic test for NC21OHD is an ACTH
stimulation test measuring serum concentrations of 17-
hydroxyprogesterone, a substrate of 21-OH, after ACTH
administration (108). Patients with NC21OHD have
stimulated 17-hydroxyprogesterone levels that are inter-
mediate between normal subjects and those with classic
21-OH deficiency (108).

Iatrogenic Causes of Amenorrhea

Medication-induced amenorrhea
Various drugs, including hormonal contraceptives and

leuprolide, interfere purposefully with normal menses by
acting directly on the hypothalamus or pituitary. A num-
ber of other medications cause infertility or amenorrhea as

doi: 10.1210/jc.2014-3344 jcem.endojournals.org 819

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 01 July 2015. at 06:01 For personal use only. No other uses without permission. . All rights reserved.



a side effect of their use. These medications act by: 1)
inhibiting GnRH release; 2) inducing hyperprolactinemia;
or 3) inducing hypophysitis.

Inhibition of GnRH release
Opioids. Opioids are an under-recognized but common
cause of hypogonadism (109). The effect of opioids on the
gonadal axis has been extensively studied in men, and
hypogonadotropic hypogonadism may be a more com-
mon side effect in men compared to women (110). In vitro
and human studies suggest that opioids act by directly
inhibiting GnRH release (111, 112), although they may
also act by inducing hyperprolactinemia (113).

Medication-induced hyperprolactinemia
Psychotropic medications. A number of medications
cause hyperprolactinemia by interfering with dopamine’s
inhibitory effect on prolactin secretion. The medications
that most commonly cause hyperprolactinemia are neu-
roleptics, which act by blocking dopamine receptors. Due
to their greater affinity for the D2 receptor (114), typical
antipsychotics have a more robust effect on elevating pro-
lactin levels compared to atypical antipsychotics, with the
exception of risperidone (115). Data on selective-sero-
tonin reuptake inhibitors are conflicting, but a large open-
label study of depressed individuals demonstrated the de-
velopment of hyperprolactinemia in 22% of women after
12 weeks of fluoxetine use (116). Clomipramine, a tricy-
clic antidepressant that inhibits serotonin uptake, also in-
creases prolactin levels (117). These serotonin uptake in-
hibitors may increase prolactin levels by increasing
serotonergic inhibition of dopaminergic neurons.

Other medications. Through a similar antidopaminergic
mode of action, certain gastrointestinal motility agents
and antihypertensives have also been associated with hy-
perprolactinemia. Serum prolactin levels increase 6-fold
after oral or iv metoclopramide (118), and domperidone
also stimulates prolactin release (119). Methyldopa, an
�-adrenergic agonist, and verapamil, a calcium-channel
blocker, both increase prolactin levels, likely by decreas-
ing dopamine synthesis (120, 121).

Medication-induced hypophysitis
Cytotoxic T-lymphocyte antigen 4 (CTLA-4) antibodies.
Ipilimumab and tremelimumab are human monoclonal
antibodies targeting CTLA-4, thereby promoting an im-
mune-mediated response against cancer. Ipilimumab has
been approved by the Food and Drug Administration to
treat advanced malignant melanoma and is undergoing
trials to explore its use in other malignancies. Given its
immunostimulatory properties, ipilimumab has been as-

sociated with autoimmune reactions including hypophy-
sitis resulting in hypopituitarism. A large randomized con-
trolled trial studying the effects of ipilimumab in
metastatic melanoma found the incidence of hypopitu-
itarism to be 2.3% (122).

Pituitary surgery
Although reports in the literature suggest that surgical

treatment of a pituitary lesion is rarely associated with
hypogonadism (123), this is likely an underestimate of the
true prevalence. This is due to the fact that surgeons with
higher surgical volumes have fewer postsurgical compli-
cations (124), and most of these reports reflect rates of
hypogonadism of dedicated pituitary surgeons.

Radiation treatment
Radiation therapy directed at the hypothalamus or pi-

tuitary is a well-known cause of hypopituitarism (125).
Importantly, individuals who have radiation therapy for
nonpituitary brain tumors are also at significant risk of
developing hypogonadism (126). The development of hy-
pogonadism and hyperprolactinemia in these individuals
is associated with the dose of radiation therapy adminis-
tered (127).

Conclusion

In conclusion, perturbations of the HPA axis due to phys-
iological, pathological, and iatrogenic causes constitute a
majority of cases of amenorrhea and infertility. FHA, a
physiologic response to physical, emotional, or nutritional
stress is the most common cause of neuroendocrine amen-
orrhea, and identifying this entity is essential in order to
diagnose and treat the underlying disorder. Given the con-
sequences of not treating amenorrhea, namely loss of bone
mass, as well as the age constraints in treating female pa-
tients with infertility, prompt diagnosis and institution of
treatment are critical.
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